If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+55n+42=0
a = 7; b = 55; c = +42;
Δ = b2-4ac
Δ = 552-4·7·42
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-43}{2*7}=\frac{-98}{14} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+43}{2*7}=\frac{-12}{14} =-6/7 $
| 2.5^x=6.25 | | 3x+2(5+8)=124 | | -4b+2=17 | | 6.5x+6.5(x+38.4)=338 | | 12078+653=11937+279+n | | 4^3(x+52^1)=8^5 | | 360=60t | | -5-2x=-3(-2-5x)+6 | | 5(r+2)=7+2r | | (4x-32)=(8x-10) | | -6.3=e+.81 | | 4x+((8-x)÷2)=46 | | 5x-3=11-2× | | w+(2)=-18 | | 1.5e=-25 | | -y^2-y+576=0 | | 4x^2+23x+8=0 | | 0.2(3x-8)=0.6(2+x)-2.8 | | 19-f15=11 | | 5e+5e=20 | | 0.18(5x-8)=0.9(1+x)-2.34 | | 13−4(2x+1)=1 | | (4x+20)=(2x+40) | | 7x−10=11 | | 4(2t+5)=2(1-4t)-22 | | 2+x+90=180 | | 1/2x+60=x | | 2x+x+x+90=180 | | 6=5(7+3b) | | 15-a-4=-28 | | t-(+4)=21 | | 11/15=a.15 |